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1 Electrical & Electronics Engineering, Hacettepe University, Ankara, TURKEY 
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ABSTRACT   

In this work, plastic wires buried in dry, damp and wet soils are being detected from ground penetrating radar (GPR) 

images. Such detection is hard, mainly due to three facts: (1) detection of buried targets made of different materials but of 

the same shape is difficult from GPR images as their signatures look very similar; (2) the same object buried in different 

soils shows different signatures in a GPR image; and (3) obtaining GPR data in the millions range is not a viable option 

because of the difficulties in data collection.  Therefore in this work, first, domain adaptation (DA) is used to bring the 

information from previously trained deep learning models on standard image processing tasks into the GPR domain. It is 

shown that with DA, high classification rates can be achieved even with small GPR datasets, and that these rates surpass 

the classification rates achieved by convolutional neural networks (CNNs). However, detecting the targets in different soils 
still remains a problem. Therefore, secondly, a multi-task CNN is proposed, in which, soil and target classification are 

stitched together. In doing so, our customized classifier detects targets according to soil type, and results in superior 

classification rates. To the best of our knowledge, we are the first group to use multi-task learning for buried target detection 

with GPR. 

Keywords: GPR, Convolutional Neural Network, Domain Adaptation. 

 

1. INTRODUCTION  

Ground penetrating radar (GPR) can be described as a radar that aims to detect and identify objects subsurface [1]. 

Especially with the decrease in the metal content in most buried targets, GPR has been becoming the most dominant sensor 

for detection of buried objects with metal-free or small metal content [2]. Over the years, GPR has been quite often 

investigated in various fields including as oil, gas exploration, geology, canal and pipeline localization [3], but in particular 

for landmine detection [4]–[6].  

Despite being the most popular method for detecting buried targets, GPR too has weaknesses. GPR systems need to 

dielectrically differentiate between soil and buried targets in order to detect buried targets. However, these differences are 

often not enough, which presents the biggest obstacle for a GPR system. If the dielectric difference is not large enough 

between the buried object and the lossy soil, target detection becomes especially hard [7]. Further, the detection 

performance depends not only on the properties of the buried targets, but also on the soil conditions, the temperature, 

weather conditions as well as the changing terrain. Typically, objects that are large and metallic are easier to detect when 
they are buried closer to ground surface, but will not be noticed if they are made from smaller, deeper buried and dielectric 

materials [8]. In addition, ground bounce and non-target reflections are more pronounced than buried object signatures, 

causing buried objects to become hard to notice. These negativities can lead to false alarms in target detection and can lead 

to dangerous consequences such as death or injury in the presence of explosives.  

The research to decrease these false alarms range from developing new preprocessing methods to remove the ground 

bounce or clutters [5, 9, 10], to new detection algorithms [11, 12, 13], to sensor fusion [6, 14, 15]. However, all of these 

studies suffer from at least one of these problems, that the training data is not enough, and the extraction of features is very 

difficult and requires expert knowledge [16]. Based on the superiority of deep learning methods compared to traditional 

classification algorithms over many fields, and with the increase in the processing power of computers, these two issues 

have lately been addressed using deep learning algorithms in [17] and [18]. In [17], deep learning is used for the detection 

of buried pipes; and it is shown that the performance is only 83%, if the actual data is tested with a model trained by 
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synthetic data. If domain adaptation is applied, performance shifted up to 95%. The experimental results in this study 

confirm the idea that CNN can in principle be trained entirely from synthetic data.  

One approach that is not considered in these studies is multi-task learning (MTL). MTL is a method in which multiple 

learning tasks are solved at the same time, and the useful information contained in one task is used to leverage the 

information contained in the second task. MTL; also called as  participatory learning or as learning with auxiliary tasks; is 

being successfully used in several areas including natural language processing [19], speech recognition [20] and computer 
vision [21]. A shared property of these applications is that an additional task assists the main task through a common loss 

function with the goal of using field-specific knowledge in related tasks  [22]. A nice overview of MTL methods can be 

found in [23]. For GPR, this field-specific knowledge, ie. the auxiliary task, can be the soil type or the humidity of the soil; 

as the soil properties greatly determine the shape and amplitude of the recorded signal.  

In this paper, a deep-learning based transfer learning (TL) approach followed by multi-task learning (MTL) is proposed 

for the detection of buried wires that might indicate the existence of a nearby improvised explosive device. Detection of 

wires with GPR is a very under-studied topic; however, it can give significant clues when it is difficult to detect an 

improvised explosive device, which come in various sizes, forms and materials. For this purpose, first, synthetic data is 

generated with GPRMax [24]. In addition, a second dataset is obtained from the authors of [25]. Then, a Convolutional 

Neural Network (CNN) model is trained tailored for the dataset, until the performance reached a limit based on the 

parameters such as filters, order of layers and depth. However, it was seen that this performance can be increased and the 

evaluation time can be decreased if transfer learning is used.  

Transfer learning is a method in which a pre-trained model for one task is reused as the starting point to learn a model for 

a second task [26]. If the images are from different domains, as in our case, where the first task is based on RGB image 

data whereas the second task is based on GPR data, TL is often referred to as domain adaptation. To train a better CNN 

model for GPR images, the first two layers (conv1, pool1, relu1, conv2, pool2, relu2) of Vggnet [27] were used as a feature 

extractor. Then, a third convolution layer and a fully-connected layer were added to these fixed layers and were trained on 

the GPR data. Although this method increased the detection rates, like many other classification algorithms, it lacked one 

pretty important information: GPR data is significantly affected from the type and the humidity of the soil. While a target 

placed in dry soil can be detectable, the same target may become almost invisible when the soil gets wet. 

Finally, to take the soil type information into consideration, multi-task learning was proposed. In the proposed MTL 

framework, there is a two-network structure, one of which learns to discriminate the soil based on its humidity, and other 

which learns to identify the targets. These two networks are stitched together such that both tasks feed each other and result 
in improved prediction accuracy. 

In the sections that follow, we first give information on the datasets we are using. Then, we provide a background on the 

CNN modules that form the backbone of our model; and complete it with domain adaptation and multi-task learning. 

Finally, we provide the experimental results and compare the algorithms on all datasets.  

2. GPR DATASETS 

Within the scope of this study, 3 different datasets have been studied. In the first dataset, plastic wire objects were placed 

in dry, damp and wet soil, and called as the target class. In the non-target class, non-plastic wires and irregular shaped 
objects were placed in dry, damp and wet soil. The dataset was divided into train, validation and test sets as shown in Table 

1. 

Table 1. Dataset I 

 TARGET NON-TARGET 

Buried Material 
Wire 

(Plastic) 

Wire 

(Non-plastic) 

Irregular Shaped 

Objects 

Soil Moisture Level Dry Damp Wet Dry Damp Wet Dry Damp Wet 

Train 34 33 33 34 33 33 7 7 6 

Validation 17 17 16 17 17 16 7 7 6 

Test 17 17 16 17 17 16 7 7 6 

Total 200 200 60 

 

The second dataset is generated to investigate the effect of the humidity in the soil on target detection, and to learn the soil 

types to aid in target detection. Therefore, dry, damp and wet soil classes were formed; in which the buried targets may or 
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may not exist. GPR scans of buried wires in different soil types are shown in Fig. 1. The amplitudes along the red lines in 

Fig. 1.(a,b,c) are plotted in Fig. 1.(d). It can be seen that for the same object, both the amplitude and the time of the return 

signals change, when it is put into different soils. In the time axis, 100 unit indicate 470ps. 

 
(a) Dry sand 

 
(b) Damp sand 

 
(c) Wet sand 

 
(d) Red reference lines plotted from (a), (b) and (c). 

Fig. 1. GPR scans of buried wires  

From now on, this dataset will be referred to as Dataset II, and the distribution of training, validation and test samples are 

shown in Table 2. 

Table 2. Dataset II 

 Dry Soil Damp Soil Wet Soil 

Buried 

Material 
Wire 

Irregular 

Shaped 
Wire Irregular Shaped Wire Irregular Shaped 

Train 150 50 150 50 150 50 

Validation 40 10 40 10 40 10 

Test 70 30 63 47 42 34 

Total 350 360 326 
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Electromagnetic specifications of the materials used in the dataset are shown in Table 3. These specifications are relative 

permeability 𝜇𝑟,  relative permittivity 𝜀𝑟 and conductivity . 

 

Table 3. Electromagnetic specifications of materials 

Material 𝜺𝒓  𝝁𝒓 
Dry Sand 3 0.00001 2.0 

Damp Soil 8 0.01 1.0 

Wet Soil 20 0.1 1.0 

Copper 10000 5600000 1 

Concrete 6 0.001 1 

Asphalt 2 0.01 2 

Plastic 6 0.01 1 

 

The electromagnetic simulation of the buried objects in various backgrounds are performed using Gprmax [ 24, 28], and 

these two datasets are generated according to the model shown in Fig. 2. Gprmax B-scan environment is modelled as 0.5 

x 0.6 x 0.002 meters in along-track, depth and cross-track dimensions. Transmit (T) and receive (R) antenna pairs are 

separated by 4 cm. Ricker waveform at center frequency of 2.5 GHz is used in simulation. Objects are buried across in the 
cross-track dimension and at different depths notated as d as shown in Fig. 2. The buried wires have 5 - 10 - 15 mm radius 

denoted as r in the figure.  

 

Fig. 2. Simulation environment for generated data 

 

The third dataset is obtained from [25].  In this dataset, the simulation environment is modelled as 1 x 1 x 0.2 meters in 
cross-track, along-track and depth dimensions. T/R pairs are placed in the along-track direction, starting from 10 cm and 

going to 90 cm with 1cm steps; which result in 81 along-track positions. Transmit and receive antennas in a pair are 

separated by 2 cm. Soil depth is 15 cm and T/R pairs are placed 3 cm above the surface. Gaussian derivative waveform at 

center frequency of 2.5 GHz is used in simulation. The number of target and non-target objects are given in Table 4. 

Table 4. Dataset III 

 TARGET NON-TARGET 

Buried Material Wire (PEC) Stones And Clutters 

Train 125 125 

Validation 50 50 

Test 50 50 

Total 225 225 

Along-track 

     Air 
        Soil 
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The first dataset has been tested with three classification algorithms; namely; (i) standard deep convolutional neural 

networks, (ii) a deep learning model that uses transfer learning and (iii) a deep learning model that uses multitask learning 

in addition to TL. These will be explained in the sections that follow. The third dataset, however, does not have the humidity 

information. Therefore, only deep and transfer learning have been tested on the third dataset. 

 

3. BACKGROUND ON CNNS  

CNNs are like ordinary neural networks, in that they are made up of neurons that have learnable weights and biases. 

However, with the explicit assumption that the inputs are images, these weights can be shared, resulting in a big reduction 

in the amount of parameters and reduced complexity [29, 30, 31]. What makes CNNs desirable is that, both feature 

extraction and classification can be performed in a single network.  

A CNN typically consists of the convolutional layers, rectification linear units (ReLU), pooling, and fully connected layers. 

The parameters of these layers, called the weights, are learned through backpropagation. Typically, the first layer learns 

more general attributes such as edge detection and color separation, whereas the next layers learn more special features. 

Each of the layers are described below: 

Convolutional layer is made of filter banks and these filters are called as the weight matrix. Weight matrix consists of 
learnable parameters, which are learned through backpropagation using variable learning rates.  

Activation layer is the nonlinearity in the network. It is applied after the convolutional layer and selects the larger values 

by comparing the current values with a certain value. In our network, we used the rectificed linear unit (relu) activation 

function given in equation (1): 

where x is the input and y is the output of the layer. 

 

 

Pooling layer is applied to reduce the size of the matrix. It reduces the number of parameters by reducing the resolution, 

and reduces the probability of overfitting [30]. It is placed between convolutional layers and gradually reduces the number 

of parameters to alleviate the process load. Maximum and average pooling layers are the two most common pooling layers. 

In this work, maximum pooling was used. 

 

Full-connected layer makes the high-level reasoning. Every neuron from the last pooling layer is connected to every layer 

of the fully-connected layer. 

 

The CNN architecture used in this study is shown in Fig. 3. This serves as the baseline model, to which we compare our 

proposed methods.  

C: Convolutional Layer,  P: Pooling Layer, R: ReLU Layer, FC: Fully Connected Layer,  SM: Soft-max Layer 

Fig. 3. Proposed Convolutional Neural Network Structure 

𝑦 = max(0, 𝑥) (1) 
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4. PROPOSED METHOD 

The framework of the proposed method is given in Fig. 4. where the first two layers are transferred from Vggnet, and the 

third convolutional layer is modified with a cross-stitching unit to perform multi-tasking. These are discussed in detail 

below. 

 

 
Fig. 4. The framework of the proposed method 

 

For the CNN, the architecture was given in Fig. 3. Convolutional (C), pooling (P) and fully connected (FC) layers and their 

filter dimensions; depth, stride and zero padding values in proposed CNN architecture are shown in Table 5. Note that the 

GPR image dimensions are 227x227 pixels. 

 
Table 5. Filters and Parameters Proposed in the CNN model 

Layers C1 P1 C2 P2 C3 P3 FC 

Filter 11x11 3x3 5x5 2x2 4x4 2x2 1x1 

Depth 12 12 64 64 64 64 2 

Stride 4 2 2 2 2 2 1 

Zero Padding - - - - - - - 

 
4.1 Transfer Learning 

In this work, the imagenet-matconvnet-vgg-f model trained on the Imagnet Large Scale Visual Recognition Challenge 

(ILSVRC 2012) data [32] was used. The ILSVRC uses a portion of the ImageNet dataset, and consists of 1.2 million 

images collected from flickr and other search engines, and divided into 1000 categories.The Vggnet model trained on these 

images has 19 layers, consisting of 5 convolutional layers (together with some relu and pooling layers), before the fully-

connected layers.   

First, instead of training the CNN from scratch, we “transfer” the learned features from the first two convolutional layers 

of the Vggnet. In doing so, we treat the convolution layers as fixed feature extractors for our GPR dataset. We then train 

the third convolutional layer and the fully-connected layer, and fine tune the parameters for our wire-detection problem. 

4.2  Multi-Tasking Learning 

Multitasking learning is an approach that learns a task using the training information of other related auxiliary tasks. In 

this study, soil humidity was selected as the auxiliary task of buried target detection. 

In order to use the proposed multitasking learning model, two single tasks, namely target detection and soil type detection, 
were trained separately. Then, these separate tasks were combined using a stitching coefficient.  The goal of this unit is to 

get assistance from the soil type task for the target detection task. To provide this assistance, inspired by [33], a cross-

stitching unit is placed between the two tasks. This unit combines the main task and the auxiliary task with a certain 

coefficient. The detailed illustration is shown in Fig. 5. Boxes shown with green color are convolutional layers and boxes 

filled with blue are pooling layers. 
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Fig. 5. Proposed Method Operation Scheme 

 

The proposed cross-stitching unit added after the convolutional layer multiply the target task by the coefficient α and the 

auxiliary task by (1-α). For two different tasks as A and B, which are individually trained and modelled, we recommend 

an interface that will combine these two tasks. This unit will provide a linear combination of outputs after the convolutional 

layer as shown in equation (2): 

 

 

[𝑥] = [𝛼(1 − 𝛼)][
𝑥𝐴

𝑥𝐵
] (2) 

 

In this equation, 𝑥𝐴 is the result of the convolutional layer before the cross stitch unit, and 𝑥 is the result of the cross stitch 

unit operation. This output will generate input for the layers of the next A and B tasks. If this α value is chosen as ‘1’, the 

single-task will be selected and the effect of the B task will be cancelled.  

The value of α is learned during training. In the forward propagation, the formula of the feed-forward function is given in 

equation (2). For a gradient based back propagation [34],  the partial derivative of the feed-forward layer is used. 

Backpropagation of the proposed cross stitching unit is defined in equations (3) and (4) by differentiating with respect to 

both the input matrix and α variable: 

 

𝜕𝐿

𝜕𝑥
= [𝛼(1 − 𝛼)]

[
 
 
 
𝜕𝐿

𝜕𝑥𝐴

𝜕𝐿

𝜕𝑥𝐵]
 
 
 

 
(3) 

 

𝜕𝐿

𝜕𝛼
= 

𝜕𝐿

𝜕𝑥𝐴

𝑥𝐴 −
𝜕𝐿

𝜕𝑥𝐵

𝑥𝐵 (4) 

 

 

The expression L in equations describes the loss function in the course of the backpropagation process.  
 

5. EXPERIMENTAL RESULTS  

In the experiments, first, the data was pre-processed, then sent to the classifiers, each of which are explained below. 
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5.1 Pre-processing 

The outputs of the electromagnetic simulation of the buried object model with Gprmax contain the ground bounce and 

clutter signals. To remove these undesired signals, a background removal was performed. The background was generated 

from the same soil in which no object is buried, and subtracted from the generated data. Further, the signature of the target 

shows diminishing image clarity proportional to the depth of the object, as shown in Fig.6 (a), where the signal level 

decreases towards the arms of the hyperbola shape formed by the target object. This is due to the trade-off between the 
signal level of reflections and the depth of the soil. To correct this behaviour, whitening is applied, which is a standard 

procedure and corrects for signal level differences [6, 15, 35, 36]. The result obtained by background removal and 

whitening is shown in Fig. 6. It can be seen that the decreasing signal level is corrected towards the hyperbola arms and 

the depth effect is removed. 

 

   
(a) Raw Data (b) Background Removal (c) Whitening 

Fig. 6. Pre-processing Results.(a) The raw data shows the ground bounce and the signal decrease based 
on depth. (b) Ground bounce is removed through background subtracting. (c) Whitening increases the 

signal at the arms of the hyperbola. 

 

5.2 Classification Results 

Transfer and multitask learning methods are applied on the first, second and third datasets, and the experimental results 

are given in Table 6. In Table 6, the main task is set as the target detection task, and the auxilary task is selected to be the 

soil classification task. The classification was run 25 times for each task, and the mean and standard deviation values were 
reported. In Table 5, the baseline CNN resulted in 74.1% accuracy in target detection, which increased to 77.4% with TL, 

and to 78.59% with MTL on the target detection dataset I. Therefore, it can be seen that both TL and MTL gradually 

increased the classification rates. On the second dataset, soil classification accuracy was computed, and it was found to be 

58.6% with the baseline CNN, which increased to 76.9% with transfer learning. On the third dataset, target detection 

accuracy was 91.5% with baseline CNN, which increased to 91.7% with TL. Unfortunately, there is no wet/damp/dry soil 

for the third dataset, ie. all the targets are buried in one type of soil humidity; therefore, we could not compute the MTL 

scores.   

Table 6: Experimental Results Comparing Baseline CNN, Transfer Learning and Multitask Learning 

Classification 

Accuracy 

CNN TL MTL 

µ 𝜎 µ 𝜎 µ 𝜎 

Target Detection  

(Dataset I) 

74,1 0,5 77,4 2,2 78,59 1.73 

Soil Detection  

(Dataset II ) 

58,6 2,8 76,9 2,0 - - 

Target Detection 

(Dataset III) 

91,5 1,5 91,7 1,5 - - 
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Three interesting runs of multitask learning are given explicitly in Table 7. In the first row, the target classification task on 

the first dataset is reported as 77.50%; and the soil classification on the second dataset is reported as 76.92% using TL. 

Then, cross-stitching finds the optimal value of α to be 0,7682. With stitching, the classification accuracy on the first 

dataset is increased to 79.17%. In the third row, again the target task is increased from 75% to 76.67%. However, a very 

interesting result is seen in the second row: the target classification accuracy is already high; therefore, the value of α is 

found to be 1; indicating that the soil task is not contributing to the classification in MTL. Therefore, if the auxiliary task 
is not found to be benefitting the main task, it receives a zero weight, and does not affect the classifier. 

Since there are both plastic target wires and non-plastic non-target wires exist in the first dataset, the results are pretty hard 

to interpret. Nonetheless, below, we give the GPR images that are correctly and incorrectly classified, in Fig. 7. 

 

  

(a) True positive samples from the target-class (b) True negative samples from the non-target-class 

 

(c) False alarms from the target-class. 

Fig. 7. Correctly and incorrectly classified samples from Dataset I. 

For the third dataset, CNN and TL was applied, and some sample results are given in Fig. 8 and 9. When we examine the 
results, it is seen that high contrast reflections from buried PEC wires are easy to detect in the target class. However, if 

clutter objects had strong signatures, they were classified as false alarms, as expected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Experimental results showing the details of multitask learning. 

Task: Learning Accuracy Source Task α 
µ 𝜎 Target Soil 

Target: Multitask I 79,17 - 77,50 76,92 0,7682 

Target: Multitask II 80,00 - 80,00 76,92 1 

Target: Multitask III 76,67 - 75,00 76,92 0,8705 
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(a) True positive samples from the target-class (a) False alarm in target-class 

  

(b) True negative samples from the non-target-class (b) False alarm in non-target-class 

Fig. 8. Correct classification samples from Dataset III. Fig. 9. False alarm samples from Dataset III. 

  

6. CONCLUSION 

Buried wire detection with GPR is an important problem in fighting with improvised explosive devices. In this study, 

synthetically generated wire data was classified using three proposed approaches: (i)  a baseline CNN model, (ii) transfer 

learning from the Vggnet, and (iii) a multi-task model. Over repeated experiments, it was shown that the transfer learning 

increased the classification rates when compared to the CNN; and MTL increased them even further. This shows that the 

humidity of the soil is a good auxiliary task which should be used in target detection from GPR. Another interesting 

observation with MTL was that where the multitask learner failed to increase the performance, the α values was set to '1' 

and showed that the best performance was in the target task.  
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